C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name : Numerical Analysis

Subject Co	ode : 4SC03NUA1	Branch: B.Sc. (Mathema	Branch: B.Sc. (Mathematics)			
Semester: 3	3 Date: 24/11/2022	Time: 11:00 To 02:00	Marks: 70			
Instructions (1) Use (2) Ins (3) Dra (4) Ass	s: e of Programmable calculator & ar tructions written on main answer b aw neat diagrams and figures (if ne sume suitable data if needed.	ny other electronic instrument is p book are strictly to be obeyed. ecessary) at right places.	rohibited.			
Q-1 a	Attempt the following question) If $\Delta y_5 = 20$ and $y_5 = 14$ then	$y_6 = \$	(14) (1)			
b) Gauss Backward Interpolation	formula is useful when p lies betw	veen (1)			
c d) Difference of a constant function $e^{-hD} = \underline{\qquad}$	on is	(1) (1)			
e	(i) $(1 - \nabla)$ (ii) $(1 - \nabla^{-1})$ (iii) $(1 - \nabla)^{-1}$ (iv) None of these In Bessel's formula, for which ∇	value of p the coefficients of all o	dd (1)			
f	(1) Absolute error (2) (3) Error (4)	lue and measured value is) Relative error) Percentage error	. (1)			
g) State Laplace Everett's formula), i i i i i i i i i i i i i i i i i i i	(1)			
h) Determine whether the stateme	nt is True or False:	(1)			
	Divided difference are not sym	metric functions of their argumen	ts.			
i)) Write a relation between Δ and	Ε.	(1)			
j) Round off the number 0.00014.	3468 to four significant figures.	(1)			
k	x) Which formula is the average o Gauss Backward Interpolation	f Gauss Forward Interpolation for formula ?	rmula (1)			

I) State Bessel's formula. (1)
m) For which vale of p Sterling's formula is useful ? (1)
n) For which vale of p in Laplace Everett's formula accurate results are obtained ? (1)

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all	questions	1				(14)
	Α	Prove: $\Delta = E \nabla = \nabla E = \delta E^{\frac{1}{2}}$.						(07)
		Prove : $2 + \Delta = \left(E^{\frac{1}{2}} + E^{\frac{-1}{2}}\right)(1 + \Delta)^{\frac{1}{2}}$						
		Find $\Delta^2 \left[\frac{1}{x(x)} \right]$	$\frac{1}{(x+6)}$					
	В	Express $f(x) = 0$	$x^3 - 2x$	$x^{2} + x - 1$ in	to factorial 1	notation and	show that	(05)
	С	(1) Prove : $\nabla = 1 - E^{-1}$ (2) Prove: $\Delta = E - 1$						(02)
Q-3		Attempt all questions (1						
	A Derive Newton's Divided Difference formula for unequal intervals. What if arguments are equally spaced?						(07)	
	В	State and prove Gauss Backward Interpolation formula in the central difference notation.						(07)
Q-4		Attempt all	questions					(14)
-	A	State and pro	ove Lagrang	e's Interpola	tion formula	a.		(05)
	В	B Show that $\mu = \frac{1}{2} \left(E^{\frac{1}{2}} + E^{\frac{-1}{2}} \right)$ $\mu^2 = 1 + \frac{1}{4} \delta^2$						
	С	From the following table find y at $x=34$ using Laplace-Everett's formula:						
		X	20	25	30	35	40	
		Y	11.4699	12.7834	13.7648	14.4982	15.0463	
Q-5		Attempt all	questions					(14)
	Α	State and pro-	ove Sterling	's Interpolat	ion formula.			(05)
	B Prove Bessel's Interpolation formula.							(05)
	C If $f(x) = x^3$ then find $f(1,3,5,7)$.							(04)
Q-6	Α	Attempt all questions If $f(x) = \frac{1}{x}$ then show that $f(x_0, x_1,, x_r) = \frac{(-1)^r}{x_0 x_1 x_r}$ where r is any					(14) (04)	

positive integer.

- **B** Show that $\Delta^n [x]^n = n!$ for h = 1.
- C Obtain a polynomial satisfied by the following table using Newton's (05) divided formula.

x	-4	-1	0	2	5
У	1245	33	5	9	1335

Q-7 Attempt all questions

Show that (i) $\delta = \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$

(ii)
$$\Delta = \frac{1}{2}\delta^2 + \delta \sqrt{1 + \frac{\delta^2}{4}}$$

B Given

A

log654 = 2.8156, log658 = 2.8182, log659 = 2.8189, log661 = 2.82

Find log656 using Newton's Divided Difference formula. (log base 10)
 C The following data given the percentage of criminals for different age (05) groups:

Age	25	30	40	50
% of	52	67.3	84.1	94.4
criminals				

Using Lagrange's formula find the percentage of criminals at the age of **35**.

Q-8 Attempt all questions (14) A State and prove Gauss Forward Interpolation formula. (07) B Write down the approximate representation of ²/₃, correct to four significant figures and find (i) Absolute Error ,(ii) Relative Error and (iii) Relative Percentage Error. (03)

C If $R = 10x^3y^2z^2$ and errors in x, y, z are 0.03,0.01, 0.02 respectively at (04) x = 3, y = 1, z = 2.Calculate the absolute error, relative error and percentage error in evaluating R.

(05)

(14)

(04)

(05)